Chapter 7 Ordinary differential equations - Boundary value problems
نویسنده
چکیده
In the present chapter we develop algorithms for solving systems of (linear or nonlinear) ordinary differential equations of the boundary value type. Such equations arise in describing distributed, steady state models in one spatial dimension. The differential equations are transformed into systems of (linear and nonlinear) algebraic equations through a discretization process. In doing so, we use the tools and concepts developed in Chapter 5. In particular we will develop (i) finite differencemethods using the difference approximations given in Table 5.4, (ii) shooting methods based on methods for initial value problems seen in chapter 6 and (iii) the method of weighted residuals using notions of functional approximation developed in Chapter 5. We will conclude this chapter with an illustration of a powerful software package called COLSYS that solves a system of multi-point boundary value problems using the collocationmethod, cubic splines and adaptive mesh refinement. It is available from NETLIB.
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملOn boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملSolutions for some non-linear fractional differential equations with boundary value problems
In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators. Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems.
متن کاملF-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM
We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...
متن کامل